Small molecule signals mediate social behaviors in C. elegans

J Neurogenet. 2020 Sep-Dec;34(3-4):395-403. doi: 10.1080/01677063.2020.1808634. Epub 2020 Sep 29.

Abstract

The last few decades have seen the structural and functional elucidation of small-molecule chemical signals called ascarosides in C. elegans. Ascarosides mediate several biological processes in worms, ranging from development, to behavior. These signals are modular in their design architecture, with their building blocks derived from metabolic pathways. Behavioral responses are not only concentration dependent, but also are influenced by the current physiological state of the animal. Cellular and circuit-level analyses suggest that these signals constitute a complex communication system, employing both synergistic molecular elements and sex-specific neuronal circuits governing the response. In this review, we discuss research from multiple laboratories, including our own, that detail how these chemical signals govern several different social behaviors in C. elegans. We propose that the ascaroside repertoire represents a link between diverse metabolic and neurobiological life-history traits and governs the survival of C. elegans in its natural environment.

Keywords: Ascarosides; C. elegans; behavior; neural network; sociobiology.

Publication types

  • Review

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / growth & development
  • Caenorhabditis elegans / physiology*
  • Chemoreceptor Cells / physiology
  • Dose-Response Relationship, Drug
  • Female
  • Genes, Helminth
  • Glycolipids / chemistry
  • Glycolipids / physiology
  • Hermaphroditic Organisms / physiology
  • Locomotion / physiology
  • Male
  • Metabolic Networks and Pathways
  • Molecular Structure
  • Nematoda / metabolism
  • Neural Pathways / physiology
  • Pheromones / chemistry
  • Pheromones / physiology*
  • Sex Attractants / physiology
  • Sexual Behavior, Animal / physiology
  • Signal Transduction
  • Social Behavior*
  • Starvation

Substances

  • Glycolipids
  • Pheromones
  • Sex Attractants