TDP-43 dysfunction results in R-loop accumulation and DNA replication defects

J Cell Sci. 2020 Oct 30;133(20):jcs244129. doi: 10.1242/jcs.244129.

Abstract

TAR DNA-binding protein 43 (TDP-43; also known as TARDBP) is an RNA-binding protein whose aggregation is a hallmark of the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 loss increases DNA damage and compromises cell viability, but the actual function of TDP-43 in preventing genome instability remains unclear. Here, we show that loss of TDP-43 increases R-loop formation in a transcription-dependent manner and results in DNA replication stress. TDP-43 nucleic-acid-binding and self-assembly activities are important in inhibiting R-loop accumulation and preserving normal DNA replication. We also found that TDP-43 cytoplasmic aggregation impairs TDP-43 function in R-loop regulation. Furthermore, increased R-loop accumulation and DNA damage is observed in neurons upon loss of TDP-43. Together, our findings indicate that TDP-43 function and normal protein homeostasis are crucial in maintaining genomic stability through a co-transcriptional process that prevents aberrant R-loop accumulation. We propose that the increased R-loop formation and genomic instability associated with TDP-43 loss are linked to the pathogenesis of TDP-43 proteinopathies.This article has an associated First Person interview with the first author of the paper.

Keywords: DNA Replication; R-loops; RNA:DNA hybrids; TARDBP; TDP-43.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amyotrophic Lateral Sclerosis*
  • DNA Replication / genetics
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism
  • Frontotemporal Dementia*
  • Humans
  • R-Loop Structures

Substances

  • DNA-Binding Proteins
  • TARDBP protein, human