High-repetition-rate mid-IR femtosecond pulse synthesis from two mid-IR CW QCL-seeded OPAs

Opt Express. 2020 Sep 14;28(19):27433-27442. doi: 10.1364/OE.402760.

Abstract

Coherent pulse synthesis in the mid-infrared (mid-IR) domain is of great interest to achieve broadband sources from parent pulses, motivated by the advantages of optical frequency properties for molecular spectroscopy and quantum dynamics. We demonstrate a simple mid-IR coherent synthesizer based on two high-repetition-rate optical parametric amplifiers (OPAs) at nJ-level pump energy. The relative carrier envelope phase between the two OPAs was passively stable for a shared continuous wave (CW) quantum cascade laser (QCL) seed. Lastly, we synthesized mid-IR pulses with a duration of 105 fs ranging from 3.4 to 4.0 µm. The scheme demonstrated the potential to obtain broader mid-IR sources by coherent synthesis from multiple CW QCL-seeded OPAs.