Distributed fiber sensor and machine learning data analytics for pipeline protection against extrinsic intrusions and intrinsic corrosions

Opt Express. 2020 Sep 14;28(19):27277-27292. doi: 10.1364/OE.397509.

Abstract

This paper presents an integrated technical framework to protect pipelines against both malicious intrusions and piping degradation using a distributed fiber sensing technology and artificial intelligence. A distributed acoustic sensing (DAS) system based on phase-sensitive optical time-domain reflectometry (φ-OTDR) was used to detect acoustic wave propagation and scattering along pipeline structures consisting of straight piping and sharp bend elbow. Signal to noise ratio of the DAS system was enhanced by femtosecond induced artificial Rayleigh scattering centers. Data harnessed by the DAS system were analyzed by neural network-based machine learning algorithms. The system identified with over 85% accuracy in various external impact events, and over 94% accuracy for defect identification through supervised learning and 71% accuracy through unsupervised learning.