Two-Dimensional CdX/C2N (X = S, Se) Heterostructures as Potential Photocatalysts for Water Splitting: A DFT Study

ACS Omega. 2020 Sep 9;5(37):23762-23768. doi: 10.1021/acsomega.0c02804. eCollection 2020 Sep 22.

Abstract

Global environmental issues, in addition to limited fossil fuel resources, are being addressed by quests in search of efficient visible-light-driven water splitting catalysts for hydrogen production. The photocatalytic water splitting activities of CdX/C2N (X = S, Se) heterostructures have been investigated here using hybrid density functional theory calculations. The calculated band gaps of CdS/C2N and CdSe/C2N heterostructures are 1.48 and 2.12 eV, respectively. These are ideal band gap values that make possible harvesting of more visible light from the solar spectrum, which will result in high solar to energy conversion efficiencies. Charge density difference analysis shows that the charge redistributions mainly occur in the interface regions and that the charges transfer from the C2N to CdX layers. It is interesting to note that the CdX/C2N heterostructures possess a type-II band alignment, where the relative band alignment of the C2N and CdX monolayers promotes a spatial separation of the electrons (that resides in C2N) and holes (that resides in CdX). Importantly, the band edges of the heterostructures straddle the water redox potential under different pH conditions. This study demonstrates that the CdS/C2N and CdSe/C2N heterostructures are suitable materials to split water (from various sources) in different ranges of pH values.