Dust accumulated fungi in air-conditioning system: Findings based on field and laboratory experiments

Build Simul. 2021;14(3):793-811. doi: 10.1007/s12273-020-0693-3. Epub 2020 Sep 19.

Abstract

This study analyzes the growth and reproduction of dust accumulated fungi (DAF) in an air-conditioning system based on field measurement and molecular biology, laboratory experiment and prediction modelling. The field measurement was conducted to collect dust in filter screen, surface cooler and air supply duct of two air handling units (AHUs). The results indicate that dust volume and fungal number in two AHUs generally met the hygienic specification of public buildings, but the cleansing did not fulfil requirements. High-throughput sequencing was conducted, revealing that the dominant fungal species were Alternaria_betae-kenyensis, Cladosporium_delicatulum, Aspergillus_sydowii, Verticillium_dahliae. Laboratory experiment was conducted to analyze the impact of several factors (e.g. growth time, temperature, relative humidity, duct material) and their combination on the DAF growth. The results indicate that fungal growth increased with time, peaking at 4 days or 5 days. Higher relative humidity or temperature was conducive to fungal growth. The orthogonal experiment revealed that the condition of "antibacterial composite, 22 ± 1 °C and 45%-55% RH" had the strongest inhibiting impact on fungal growth. Logistic model, Gompertz model and square-root model were further developed to predict the fungal growth under different conditions. The results show that the Logistic model had high feasibility and accuracy, the Gompertz model was feasible with lower accuracy and the square-root model was feasible with high accuracy. Overall, this study facilitates the understanding of the DAF growth in air-conditioning ducts, which is important for real-time prediction and timely control of the fungal contamination.

Keywords: air supply duct; duct material; dust accumulated fungi; fungal growth prediction; high-throughput sequencing; orthogonal experiment.