Homogeneous environmental selection dominates microbial community assembly in the oligotrophic South Pacific Gyre

Mol Ecol. 2020 Dec;29(23):4680-4691. doi: 10.1111/mec.15651. Epub 2020 Oct 11.

Abstract

Oligotrophic subtropical gyres are the largest continuous biomes on Earth and play a key role in global biogeochemical cycles. Microbial communities govern primary production and carbon cycling in the oligotrophic South Pacific Gyre, yet the ecological processes which underpin microbial biogeography in the region remain understudied. We investigated microbial biogeography and community assembly processes at three depths over a ~2,000-km the transect was longitudinal, so ran from 32°S, 170°W to 32°S, 152°W). Thus the latitude (32°S) was constant. Microbial communities in the surface waters (15 and 50 m) were remarkably similar across the transect, whilst communities at the deep chlorophyll maximum were distinct from the surface waters and displayed greater compositional heterogeneity. An ecological null model approach indicated that homogeneous selection was the dominant community assembly process in both the surface waters (100%) and at the deep chlorophyll maximum (91.81%), although variable selection (2.34%) and stochastic processes (5.85%) had a minor influence at the deep chlorophyll maximum. Homogeneous selection (76.69%77.90%), dispersal limitation (15.00%-20.05%) and variable selection (3.01%-7.11%) influenced community assembly between the surface waters and the deep chlorophyll maximum. Seawater density and temperature, which were correlated, were the most important environmental modulators of the balance between stochastic and deterministic assembly processes. Our findings demonstrate remarkable similarity in microbial community composition across longitudinal scales in the oligotrophic South Pacific Gyre, underpinned by strong environmental selection which overwhelms the influence of ecological drift. These data significantly advance our understanding of microbial community dynamics in the oligotrophic subtropical gyres which dominate the Earth's surface.

Keywords: Macroecology; bacteria; community ecology; microbial biogeography; null model; phylogenetic signal.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chlorophyll
  • Microbiota* / genetics
  • Pacific Ocean
  • Seawater

Substances

  • Chlorophyll