Syndecan-1 Promotes Hepatocyte-Like Differentiation of Hepatoma Cells Targeting Ets-1 and AP-1

Biomolecules. 2020 Sep 23;10(10):1356. doi: 10.3390/biom10101356.

Abstract

Syndecan-1 is a transmembrane heparan sulfate proteoglycan which is indispensable in the structural and functional integrity of epithelia. Normal hepatocytes display strong cell surface expression of syndecan-1; however, upon malignant transformation, they may lose it from their cell surfaces. In this study, we demonstrate that re-expression of full-length or ectodomain-deleted syndecan-1 in hepatocellular carcinoma cells downregulates phosphorylation of ERK1/2 and p38, with the truncated form exerting an even stronger effect than the full-length protein. Furthermore, overexpression of syndecan-1 in hepatoma cells is associated with a shift of heparan sulfate structure toward a highly sulfated type specific for normal liver. As a result, cell proliferation and proteolytic shedding of syndecan-1 from the cell surface are restrained, which facilitates redifferentiation of hepatoma cells to a more hepatocyte-like phenotype. Our results highlight the importance of syndecan-1 in the formation and maintenance of differentiated epithelial characteristics in hepatocytes partly via the HGF/ERK/Ets-1 signal transduction pathway. Downregulation of Ets-1 expression alone, however, was not sufficient to replicate the phenotype of syndecan-1 overexpressing cells, indicating the need for additional molecular mechanisms. Accordingly, a reporter gene assay revealed the inhibition of Ets-1 as well as AP-1 transcription factor-induced promoter activation, presumably an effect of the heparan sulfate switch.

Keywords: AP-1; Ets-1; MMP-7; differentiation; epithelium; heparan sulfate; liver cancer; shedding; syndecan-1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Hepatocellular / genetics*
  • Carcinoma, Hepatocellular / pathology
  • Cell Differentiation / genetics
  • Cell Proliferation / genetics
  • Gene Expression Regulation, Neoplastic / drug effects
  • Hep G2 Cells
  • Heparitin Sulfate / pharmacology
  • Hepatocyte Growth Factor / genetics
  • Hepatocytes / drug effects
  • Hepatocytes / metabolism
  • Hepatocytes / pathology
  • Humans
  • Liver Neoplasms / genetics*
  • Liver Neoplasms / pathology
  • MAP Kinase Signaling System / genetics
  • Proto-Oncogene Protein c-ets-1 / genetics*
  • Signal Transduction / drug effects
  • Signal Transduction / genetics
  • Syndecan-1 / genetics*
  • Transcription Factor AP-1 / genetics*

Substances

  • ETS1 protein, human
  • HGF protein, human
  • Proto-Oncogene Protein c-ets-1
  • Syndecan-1
  • Transcription Factor AP-1
  • Hepatocyte Growth Factor
  • Heparitin Sulfate