Single graphene derivative layer as a hole transport in organic solar cells based on PBDB-T:ITIC

Appl Opt. 2020 Sep 20;59(27):8285-8292. doi: 10.1364/AO.402510.

Abstract

A layer of fluorinated reduced graphene oxide (FrGO), as an alternative hole transport (HTL) in organic solar cells (OSCs) based on a PBDB-T:ITIC active layer, is reported. OSC configuration is ITO/HTL/PBDB-T:ITIC/PFN/FM; FM is Field's metal, a eutectic alloy deposited at room atmosphere. PEDOT:PSS, FrGO/PEDOT:PSS, and FrGO are tested as HTLs; the average efficiencies of 8.8, 8.2, and 5.3%, respectively, are reached. Inhomogeneity of the FrGO layer is determined as the main factor that affects the photovoltaic behavior and stability. Device stability is very acceptable, sometimes with a superior behavior than data previously reported; FM also could potentially contribute to this enhanced stability.