Synthesis of sandwich-like Co15Fe85@C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance

Nanoscale. 2020 Sep 28;12(36):18790-18799. doi: 10.1039/d0nr04615a. Epub 2020 Sep 7.

Abstract

Magnetic particle/carbon hybrid structures are promising candidates for high performance microwave absorbing materials with light weight and strong absorption. However, it remains a great challenge to balance the permittivity and permeability to realize impedance matching and further improve their absorption bandwidth. Herein, an effective strategy is designed to fabricate sandwich-like Co15Fe85@C/RGO composites. By introducing RGO sheets in the hybrid structures, the electromagnetic parameters, impedance matching and microwave absorption properties of the final materials can be well controlled. The optimized Co15Fe85@C/RGO composite shows an excellent microwave absorption performance, the strongest reflection loss (RL) of the sample is up to -33.38 dB at 10.72 GHz with a matching thickness of 2.5 mm, and the effective bandwidth (RL < -10 dB) can reach 9.2 GHz (8.64-17.84 GHz). With a single thickness, such a wide absorption band is rarely reported. Their excellent performance can be ascribed to the synergetic effect of the chemical composition and unique sandwich-like structures, which will improve impendence matching and strong microwave attenuation constants of the composites. Our results provide a facile strategy for tuning the electromagnetic parameters and microwave absorption properties of magnetic metal/carbon hybrid structures.