Effect of procyanidins on lipid metabolism and inflammation in rats exposed to alcohol and iron

Heliyon. 2020 Sep 7;6(9):e04847. doi: 10.1016/j.heliyon.2020.e04847. eCollection 2020 Sep.

Abstract

Background: Lifestyle involving uncontrolled alcohol consumption coupled regularly with red meat and other iron sources has detrimental effects on the liver, which in the long term, results in Alcoholic Liver Disease (ALD). Procyanidin has lately garnered increasing attention and has become the focus of research owing to its antioxidant properties. This study explores the anti-inflammatory effects of procyanidins, in preventing ALD, by analyzing the biological activities of the compound on liver injury caused by excessive alcohol and iron.

Method: Male SPF Wistar rats were placed in 4 groups; the control Group A (basic diet); the model Group B (excess alcohol 8-12 mL/kg/d and iron 1000 mg/kg diet); the low dose procyanidin Group C (model group diet plus 60 mg/kg/d of procyanidin); and the high dose procyanidin Group D (model group diet plus 120 mg/kg/d of procyanidin). Serum biochemical markers for liver damage were measured spectrophotometrically. The NFκB and IκB mRNA expression levels were determined using RT-PCR; the NFκB p65 and IκB protein expression levels were assessed via western blotting, while ELISA was used to detect serum inflammatory factors.

Results: The pathological score of the model Group B, low and high dose procyanidin Groups C and D were 6.58 ± 0.90,4.69 ± 0.70 and 2.00 ± 0.73, respectively (P < 0.05). The results showed that high alcohol and iron contents in the model group led to significant damage of liver structure, increased low-density lipoproteins (LDLs), steatosis, and increased levels of inflammatory cytokines. High amounts of procyanidins led to the preservation of the liver structure, production of high-density lipoproteins, and reduction in serum inflammatory cytokines while also significantly decreasing the expression levels of NFκB p65.

Conclusion: The results prove that procyanidins have hepatoprotective potential and could be effective in reversing histopathology, possibly by alleviating inflammation and improving lipid metabolism.

Keywords: ALD; Adaptation; Cell biology; Enzymology; Hepatic injury; Hepatoprotective; Immune response; Immunology; Inflammation; Microorganism; Oxidative stress.