Effect of Parkinson's disease and two therapeutic interventions on muscle activity during walking: a systematic review

NPJ Parkinsons Dis. 2020 Sep 9:6:22. doi: 10.1038/s41531-020-00119-w. eCollection 2020.

Abstract

Gait deficits are a common feature of Parkinson's disease (PD) and predictors of future motor and cognitive impairment. Understanding how muscle activity contributes to gait impairment and effects of therapeutic interventions on motor behaviour is crucial for identifying potential biomarkers and developing rehabilitation strategies. This article reviews sixteen studies that investigate the electromyographic (EMG) activity of lower limb muscles in people with PD during walking and reports on their quality. The weight of evidence establishing differences in motor activity between people with PD and healthy older adults (HOAs) is considered. Additionally, the effect of dopaminergic medication and deep brain stimulation (DBS) on modifying motor activity is assessed. Results indicated greater proximal and decreased distal activity of lower limb muscles during walking in individuals with PD compared to HOA. Dopaminergic medication was associated with increased distal lower limb muscle activity whereas subthalamic nucleus DBS increased activity of both proximal and distal lower limb muscles. Tibialis anterior was impacted most by the interventions. Quality of the studies was not strong, with a median score of 61%. Most studies investigated only distal muscles, involved small sample sizes, extracted limited EMG features and lacked rigorous signal processing. Few studies related changes in motor activity with functional gait measures. Understanding mechanisms underpinning gait impairment in PD is essential for development of personalised rehabilitative interventions. Recommendations for future studies include greater participant numbers, recording more functionally diverse muscles, applying multi-muscle analyses, and relating EMG to functional gait measures.

Keywords: Biophysical models; Diagnostic markers; Neurophysiology; Parkinson's disease.

Publication types

  • Review