MicroRNA-150 suppresses p27Kip1 expression and promotes cell proliferation in HeLa human cervical cancer cells

Oncol Lett. 2020 Nov;20(5):210. doi: 10.3892/ol.2020.12073. Epub 2020 Sep 8.

Abstract

MicroRNAs (miRNAs) exert critical roles in the majority of biological and pathological processes. Recent studies have associated miR-150 with a number of different cancer types. However, little is known about miR-150 targets in cervical cancer. In the present study, the HeLa human cervical cancer cell line was transfected with hsa-miR-150-5p mimics, hsa-miR-150-5p inhibitors or miRNA controls. miR-150 was predicted to bind the 3'untranslated region (3'UTR) of the CDKN1B gene, which encodes the cyclin-dependent kinase inhibitor 1B (p27Kip1). The direct binding between miR-150 and the 3'UTR of CDKN1B was confirmed using dual-luciferase reporter assays. The effects of miR-150 on CDKN1B mRNA expression, p27Kip1 protein expression, cell cycle and cell proliferation were determined using reverse-transcription quantitative PCR, western blot analysis, flow cytometry and WST-8 assays, respectively. miR-150 was demonstrated to directly target the 3'UTR of CDKN1B in transfected HeLa cells. The expression of CDKN1B mRNA and p27Kip1 protein was reduced by miR-150 mimics, and increased by miR-150 inhibitors. Moreover, the overexpression of miR-150 promoted cell cycle progression from the G0/G1 to the S phase and led to a significant increase in HeLa cell proliferation. The results of the present study indicated that miR-150 promotes HeLa cell cycle progression and proliferation via the suppression of p27Kip1 expression.

Keywords: CDKN1B; HeLa cell; cell cycle; cervical cancer; microRNA-150; p27Kip1.