Cohort study of electroencephalography markers of amyloid-tau-neurodegeneration pathology

Brain Commun. 2020 Jul 15;2(2):fcaa099. doi: 10.1093/braincomms/fcaa099. eCollection 2020.

Abstract

Electroencephalography signatures of amyloid-β, tau and neurodegenerative pathologies would aid in screening for, tracking progression of, and critically, understanding the pathogenesis of dementia. We hypothesized that slowing of the alpha peak frequency, as a signature of hyperpolarization-activated cyclic nucleotide gated 'pacemaker' channel activity, would correlate with amyloid and tau pathology burden measured by amyloid (Pittsburgh Compound B) and tau (MK-6240) positron emission tomography or CSF biomarkers. We also hypothesized that EEG power would be associated with neurodegeneration (CSF neurofilament light and hippocampal volume). Wakeful high-density EEG data were collected from 53 subjects. Both amyloid-β and tau pathology were associated with slowing in the alpha peak frequency [Pittsburgh Compound B (+) vs. Pittsburgh Compound B (-) subjects, P = 0.039 and MK-6240 (+) vs. MK-6240 (-) subjects, P = 0.019]. Furthermore, slowing in the peak alpha frequency correlated with CSF Aβ42/40 ratio (r 2 = 0.270; P = 0.003), phosphoTau (pTau181, r 2 = 0.290; P = 0.001) and pTau181/Aβ42 (r 2 = 0.343; P < 0.001). Alpha peak frequency was not associated with neurodegeneration. Higher CSF neurofilament light was associated with lower total EEG power (r 2 = 0.136; P = 0.018), theta power (r 2 = 0.148; P = 0.014) and beta power (r 2 = 0.216; P = 0.002); the latter was also associated with normalized hippocampal volume (r 2 = 0.196; P = 0.002). Amyloid-tau and neurodegenerative pathologies are associated with distinct electrophysiological signatures that may be useful as mechanistic tools and diagnostic/treatment effect biomarkers in clinical trials.

Keywords: EEG; alpha; amyloid; neurodegeneration; tau.