An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

Beilstein J Nanotechnol. 2020 Aug 26:11:1272-1279. doi: 10.3762/bjnano.11.111. eCollection 2020.

Abstract

In this work, we report on the integration of an atomic force microscope (AFM) into a helium ion microscope (HIM). The HIM is a powerful instrument, capable of imaging and machining of nanoscale structures with sub-nanometer resolution, while the AFM is a well-established versatile tool for multiparametric nanoscale characterization. Combining the two techniques opens the way for unprecedented in situ correlative analysis at the nanoscale. Nanomachining and analysis can be performed without contamination of the sample and environmental changes between processing steps. The practicality of the resulting tool lies in the complementarity of the two techniques. The AFM offers not only true 3D topography maps, something the HIM can only provide in an indirect way, but also allows for nanomechanical property mapping, as well as for electrical and magnetic characterization of the sample after focused ion beam materials modification with the HIM. The experimental setup is described and evaluated through a series of correlative experiments, demonstrating the feasibility of the integration.

Keywords: atomic force microscopy (AFM); combined setup; correlative microscopy; helium ion microscopy (HIM); self-sensing cantilevers.

Grants and funding

This work was funded by the Swiss National Science Foundation (the Swiss National Science Foundation through grant 200021_182562), the European Union Eurostars Program (Eurostars E!8213), the H2020 IONS4SET project (H2020 Grant number: 688072), the Ion Beam Center of the Helmholtz Zentrum Dresden Rossendorf through GATE proposal 19001761 and the Austrian Research Promotion Agency FFG in the frame of the “Beyond Europe” initiative (Project AIM, No. 11056459).