Bending elastic modulus of a polymer-doped lyotropic lamellar phase

J Colloid Interface Sci. 2021 Jan 15;582(Pt B):1158-1178. doi: 10.1016/j.jcis.2020.08.034. Epub 2020 Aug 11.

Abstract

The effect of inserting a neutral water-soluble adsorbing polymer on the flexibility of amphiphilic bilayers in a lamellar phase is investigated. The Lα system is a stack of charged undulating bilayers composed of sodium dodecyl sulfate (SDS) and octanol separated by aqueous solutions of polyethylene glycol (PEG). The mean bending elastic modulus κ is determined from the quadrupole splittings in the solid state NMR spectra of the perdeuterated octanol chains embedded in the membranes that undergo collective fluctuations. Parameters for describing the membrane behavior (bilayer thickness, elastic compressibility modulus, order parameter) are obtained by supplementing the NMR data with complementary experiments (x-ray scattering), NMR spectral simulations, and theoretical considerations. A fairly complete picture of the membrane rigidity emerges for any location in the lamellar phase thanks to a broad sweep of the lamellar domain by systematically varying the membrane fraction along dilution lines as well as the polymer composition. The most remarkable result is the difference between dilute and semi-dilute regimes. In the dilute PEG solution, no (or slight positive shift) polymer contribution to the rigidity curvature of the layered system is noted within the experimental resolution (≤0.3 kBT) and κ remains around 2.7 kBT. In contrast, the membrane rigidity increases steadily upon polymer addition once the crossover concentration cp* is exceeded, amounting to a 60% increase in κ at polymer concentration 2.5 cp* in the aqueous interlayers. These results are discussed with regard to the theoretical expectation of membrane rigidification upon irreversible polymer adsorption.

Keywords: Adsorbing polymer; Deuterium NMR; Lyotropic lamellar phase; Mean bending elastic constant.