A composite filter for low FDR of protein-protein interactions detected by in vivo cross-linking

J Proteomics. 2021 Jan 6:230:103987. doi: 10.1016/j.jprot.2020.103987. Epub 2020 Sep 17.

Abstract

In vivo chemical cross-linking combined with LCMSMS of digested extracts (in vivo CX-MS) can reveal stable and dynamic protein-protein interactions at proteome-wide scale and at peptide level. In vivo CX-MS requires a membrane permeable and cleavable cross-linker and a fast and sensitive search engine to identify the linked peptides. Here we explore the use of the search engine pLink 2 to identify cross-links induced in exponentially growing Bacillus subtilis cells treated in culture with bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). Cross-linked peptide pairs were identified by pLink 2 in very short time at an overall FDR of <5%. To also obtain a FDR <5% for non-redundant inter-protein cross-linked peptide pairs additional threshold values were applied for matched fragment intensity and for the numbers of unambiguous y and b ions assigned to both composite peptides. Also the mass- and charge-dependent retention times of target peptides purified by diagonal strong cation exchange chromatography were used as a criterion to distinguish true from false positives. After application of the composite filter new protein-protein interactions were revealed among others between the global transcriptional repressor AbrB and elongation factor Tu and between the essential protein YlaN of unknown function and the ferric uptake repressor Fur. SIGNIFICANCE: Important for reliable identification of PPIs by chemical cross-linking in vivo is a low FDR of non-redundant inter-protein peptide pairs. Here we describe how to recognize the presence of spurious interactions in a dataset of cross-linked peptide pairs enriched by 2D strong cation exchange chromatography and identified by LCMSMS by taking into account chromatographic behavior of cross-linked peptide pairs and protein abundance of corresponding peptides. Based on these criteria we assessed that the FDR of the fraction of non-redundant inter-protein cross-linked peptide pairs was approx. 20-25% by interrogating an entire species specific database at an overall FDR of 5% or 0.1% with a search engine that otherwise scores best in sensitivity among other search engines. We have defined a composite filter to decrease this high FDR of inter-protein cross-linked peptide pairs to only about 2%.

Keywords: Cleavable cross-linker; Cross-linking mass spectrometry; Fur; Protein-protein interactions; YlaN.

MeSH terms

  • Bacillus subtilis
  • Cross-Linking Reagents
  • Peptides*
  • Proteome*
  • Search Engine

Substances

  • Cross-Linking Reagents
  • Peptides
  • Proteome