Antioxidant response in arbuscular mycorrhizal fungi inoculated wetland plant under Cr stress

Environ Res. 2020 Dec:191:110203. doi: 10.1016/j.envres.2020.110203. Epub 2020 Sep 16.

Abstract

Arbuscular mycorrhizal fungi (AMF) provide a positive effect on antioxidant mechanisms in terrestrial plants under heavy metal stress. This study investigated the effects of AMF on wetland plant (Iris wilsonii) growth and antioxidant response under Cr stress at different water depths. Results showed that AMF inoculated I. wilsonii had higher antioxidant response than non-inoculated controls, with shoot superoxide dismutase (SOD), root SOD, shoot peroxidase (POD), and root POD contents increased by 4.7-39.6%, 7.5-29.5%, 11.2-68.6%, 16.8-50.3%, respectively. Meanwhile, shoot (root) proline, malondialdehyde (MDA) and superoxide anion (O2.-) contents in the AMF inoculated I. wilsonii were 10.2-44.3% (2.8-37.2%), 11.5-35.4% (16.9-28.2), and 14.9-30.5% (-0.9-26.3%) lower than those in the non-inoculated controls, respectively. Besides, AMF improved the growth of I. wilsonii with biomass, height, chlorophyll, K, and P contents in the shoots increased by 10.5-32.5%, 17.4-44.9%, 4.7-37.7%, 12.0-30.7%, 13.5-20.6%, respectively. Moreover, the I. wilsonii tolerance to Cr stress was also enhanced under the water depth of 6-3 cm. Therefore, AMF play an important role in wetland plant growth and antioxidant response under Cr stress, and it can improve wetland plants' tolerance to Cr stress at fluctuating water depth.

Keywords: Antioxidant response; Arbuscular mycorrhizal fungi; Reactive oxygen species; Water depths; Wetland plants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antioxidants
  • Mycorrhizae*
  • Plant Roots
  • Plants
  • Wetlands

Substances

  • Antioxidants