Double-Layered Supramolecular Prisms Self-Assembled by Geometrically Non-equivalent Tetratopic Subunits

Angew Chem Int Ed Engl. 2021 Jan 18;60(3):1298-1305. doi: 10.1002/anie.202010805. Epub 2020 Nov 12.

Abstract

Supramolecular cages/vesicles in biology display sophisticated structures and functions by utilizing a few types of protein subunit quasi-equivalently at distinct geometrical locations. However, synthetic supramolecular cages still lack comparable complexity to reach the high levels of functionality found in natural systems. Herein we report the self-assembly of giant pentagonal supramolecular prisms (molecular weight >50 kDa) with tetratopic pyridinyl subunits serving different geometrical roles within the structures, and their packing into a novel superstructure with unexpected three-fold rotational symmetry in a single two-dimensional layer of crystalline state. The formation of these complicated structures is controlled by both the predetermined angles of the ligands and the mismatched structural tensions created from the multi-layered geometry of the building blocks. Such a self-assembly strategy is extensively used by viruses to increase the volume and complexity of capsids and would provide a new approach to construct highly sophisticated supramolecular architectures.

Keywords: geometrically non-equivalent subunits; pentagonal packing; self-assembly; supramolecular prisms.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.