Individual-Based Transfer Learning for Dynamic Multiobjective Optimization

IEEE Trans Cybern. 2021 Oct;51(10):4968-4981. doi: 10.1109/TCYB.2020.3017049. Epub 2021 Oct 12.

Abstract

Dynamic multiobjective optimization problems (DMOPs) are characterized by optimization functions that change over time in varying environments. The DMOP is challenging because it requires the varying Pareto-optimal sets (POSs) to be tracked quickly and accurately during the optimization process. In recent years, transfer learning has been proven to be one of the effective means to solve dynamic multiobjective optimization. However, the negative transfer will lead the search of finding the POS to a wrong direction, which greatly reduces the efficiency of solving optimization problems. Minimizing the occurrence of negative transfer is thus critical for the use of transfer learning in solving DMOPs. In this article, we propose a new individual-based transfer learning method, called an individual transfer-based dynamic multiobjective evolutionary algorithm (IT-DMOEA), for solving DMOPs. Unlike existing approaches, it uses a presearch strategy to filter out some high-quality individuals with better diversity so that it can avoid negative transfer caused by individual aggregation. On this basis, an individual-based transfer learning technique is applied to accelerate the construction of an initial population. The merit of the IT-DMOEA method is that it combines different strategies in maintaining the advantages of transfer learning methods as well as avoiding the occurrence of negative transfer; thereby greatly improving the quality of solutions and convergence speed. The experimental results show that the proposed IT-DMOEA approach can considerably improve the quality of solutions and convergence speed compared to several state-of-the-art algorithms based on different benchmark problems.