Butane Dry Reforming Catalyzed by Cobalt Oxide Supported on Ti2 AlC MAX Phase

ChemSusChem. 2020 Dec 7;13(23):6401-6408. doi: 10.1002/cssc.202001633. Epub 2020 Sep 18.

Abstract

MAX (Mn+1 AXn ) phases are layered carbides or nitrides with a high thermal and mechanical bulk stability. Recently, it was shown that their surface structure can be modified to form a thin non-stoichiometric oxide layer, which can catalyze the oxidative dehydrogenation of butane. Here, the use of a Ti2 AlC MAX phase as a support for cobalt oxide was explored for the dry reforming of butane with CO2 , comparing this new catalyst to more traditional materials. The catalyst was active and selective to synthesis gas. Although the surface structure changed during the reaction, the activity remained stable. Under the same conditions, a titania-supported cobalt oxide catalyst gave low activity and stability due to the agglomeration of cobalt oxide particles. The Co3 O4 /Al2 O3 catalyst was active, but the acidic surface led to a faster deactivation. The less acidic surface of the Ti2 AlC was better at inhibiting coke formation. Thanks to their thermal stability and acid-base properties, MAX phases are promising supports for CO2 conversion reactions.

Keywords: CO2 conversion; MAX phases; Ti2AlC support; butane dry reforming; cobalt oxide.