Non-Destructive Quality Assessment of Tomato Paste by Using Portable Mid-Infrared Spectroscopy and Multivariate Analysis

Foods. 2020 Sep 15;9(9):1300. doi: 10.3390/foods9091300.

Abstract

This research aims to provide simultaneous predictions of tomato paste's multiple quality traits without any sample preparation by using a field-deployable portable infrared spectrometer. A total of 1843 tomato paste samples were supplied by four different leading tomato processors in California, USA, over the tomato seasons of 2015, 2016, 2017, and 2019. The reference levels of quality traits including, natural tomato soluble solids (NTSS), pH, Bostwick consistency, titratable acidity (TA), serum viscosity, lycopene, glucose, fructose, ascorbic acid, and citric acid were determined by official methods. A portable FT-IR spectrometer with a triple-reflection diamond ATR sampling system was used to directly collect mid-infrared spectra. The calibration and external validation models were developed by using partial least square regression (PLSR). The evaluation of models was conducted on a randomly selected external validation set. A high correlation (RCV = 0.85-0.99) between the reference values and FT-IR predicted values was observed from PLSR models. The standard errors of prediction were low (SEP = 0.04-35.11), and good predictive performances (RPD = 1.8-7.3) were achieved. Proposed FT-IR technology can be ideal for routine in-plant assessment of the tomato paste quality that would provide the tomato processors with accurate results in shorter time and lower cost.

Keywords: Bostwick consistency serum viscosity; FT-IR; PLSR; lycopene; natural tomato soluble solids; quality traits; tomato paste.