Epidemic spreading in heterogeneous networks with recurrent mobility patterns

Phys Rev E. 2020 Aug;102(2-1):022306. doi: 10.1103/PhysRevE.102.022306.

Abstract

Much recent research has shown that network structure and human mobility have great influences on epidemic spreading. In this paper, we propose a discrete-time Markov chain method to model susceptible-infected-susceptible epidemic dynamics in heterogeneous networks. There are two types of locations, residences and common places, for which different infection mechanisms are adopted. We also give theoretical results about the impacts of important factors, such as mobility probability and isolation, on epidemic threshold. Numerical simulations are conducted, and experimental results support our analysis. In addition, we find that the dominations of different types of residences might reverse when mobility probability varies for some networks. In summary, the findings are helpful for policy making to prevent the spreading of epidemics.