Development of thermoplastic composites based on recycled polypropylene and waste printed circuit boards

Waste Manag. 2020 Dec:118:391-401. doi: 10.1016/j.wasman.2020.08.050. Epub 2020 Sep 14.

Abstract

In the last several years, the electronic waste, especially printed circuit boards have significantly increased over the world, generating one of the highest rates of solid waste. The recycling process of the printed circuit boards implies mainly the recovery of metals and glass fibers, while the reuse of the polymeric support has remained largely in the phase of research. In this paper, the non-metallic part of printed circuit boards was used as filler (up to 30%), but also to improve the fire resistance of thermoplastic composites based on recycled polypropylene and diene block-copolymers. The synergy between the elastic effect of elastomers and the reinforcing effect of the waste powder into the thermoplastic matrix was studied by mechanical and dynamo-mechanical analysis, X-ray diffraction, optical microscopy, micro-calorimetry and thermo-gravimetrical analysis. Improved mechanical properties, especially impact strength was observed. The compatibization of components considering the interactions between the ethylene-butylene blocks from the hydrogenated and maleinized styrene-butadiene block-copolymer and recycled polypropylene, respectively between the MA groups and the functionalities of the waste powder, evidenced by FTIR, was highlighted by changes in the X-ray pattern and an increased fire resistance and thermal stability.

Keywords: Fire performance; Mechanical properties; Recycled polypropylene; Styrene-butadiene block-copolymers; Waste printed circuit boards.

MeSH terms

  • Electronic Waste* / analysis
  • Metals
  • Polypropylenes*
  • Recycling

Substances

  • Metals
  • Polypropylenes