CO2 Desorption Performance from Imidazolium Ionic Liquids by Membrane Vacuum Regeneration Technology

Membranes (Basel). 2020 Sep 14;10(9):234. doi: 10.3390/membranes10090234.

Abstract

In this work, the membrane vacuum regeneration (MVR) process was considered as a promising technology for solvent regeneration in post-combustion CO2 capture and utilization (CCU) since high purity CO2 is needed for a technical valorization approach. First, a desorption test by MVR using polypropylene hollow fiber membrane contactor (PP-HFMC) was carried out in order to evaluate the behavior of physical and physico-chemical absorbents in terms of CO2 solubility and regeneration efficiency. The ionic liquid 1-ethyl-3-methylimidazolium acetate, [emim][Ac], was presented as a suitable alternative to conventional amine-based absorbents. Then, a rigorous two-dimensional mathematical model of the MVR process in a HFMC was developed based on a pseudo-steady-state to understand the influence of the solvent regeneration process in the absorption-desorption process. CO2 absorption-desorption experiments in PP-HFMC at different operating conditions for desorption, varying vacuum pressure and temperature, were used for model validation. Results showed that MVR efficiency increased from 3% at room temperature and 500 mbar to 95% at 310K and 40 mbar vacuum. Moreover, model deviation studies were carried out using sensitivity analysis of Henry's constant and pre-exponential factor of chemical interaction, thus as to contribute to the knowledge in further works.

Keywords: CO2 desorption; Ionic liquid [emim][Ac]; hollow fiber membrane contactor; membrane vacuum regeneration; modeling.