XeUS: A second-generation automated open-source batch-mode clinical-scale hyperpolarizer

J Magn Reson. 2020 Oct:319:106813. doi: 10.1016/j.jmr.2020.106813. Epub 2020 Sep 1.

Abstract

We present a second-generation open-source automated batch-mode 129Xe hyperpolarizer (XeUS GEN-2), designed for clinical-scale hyperpolarized (HP) 129Xe production via spin-exchange optical pumping (SEOP) in the regimes of high Xe density (0.66-2.5 atm partial pressure) and resonant photon flux (~170 W, Δλ = 0.154 nm FWHM), without the need for cryo-collection typically employed by continuous-flow hyperpolarizers. An Arduino micro-controller was used for hyperpolarizer operation. Processing open-source software was employed to program a custom graphical user interface (GUI), capable of remote automation. The Arduino Integrated Development Environment (IDE) was used to design a variety of customized automation sequences such as temperature ramping, NMR signal acquisition, and SEOP cell refilling for increased reliability. A polycarbonate 3D-printed oven equipped with a thermo-electric cooler/heater provides thermal stability for SEOP for both binary (Xe/N2) and ternary (4He-containing) SEOP cell gas mixtures. Quantitative studies of the 129Xe hyperpolarization process demonstrate that near-unity polarization can be achieved in a 0.5 L SEOP cell. For example, %PXe of 93.2 ± 2.9% is achieved at 0.66 atm Xe pressure with polarization build-up rate constant γSEOP = 0.040 ± 0.005 min-1, giving a max dose equivalent ≈ 0.11 L/h 100% hyperpolarized, 100% enriched 129Xe; %PXe of 72.6 ± 1.4% is achieved at 1.75 atm Xe pressure with γSEOP of 0.041 ± 0.001 min-1, yielding a corresponding max dose equivalent of 0.27 L/h. Quality assurance studies on this device have demonstrated the potential to refill SEOP cells hundreds of times without significant losses in performance, with average %PXe = 71.7%, (standard deviation σP = 1.52%) and mean polarization lifetime T1 = 90.5 min, (standard deviation σT = 10.3 min) over the first ~200 gas mixture refills, with sufficient performance maintained across a further ~700 refills. These findings highlight numerous technological developments and have significant translational relevance for efficient production of gaseous HP 129Xe contrast agents for use in clinical imaging and bio-sensing techniques.

Keywords: Hyperpolarization; Instrumentation; MRI; NMR; SEOP; Xenon.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Automation
  • Magnetic Resonance Spectroscopy*
  • Radiopharmaceuticals / chemical synthesis*
  • Reproducibility of Results
  • Software
  • Xenon Isotopes / chemical synthesis*

Substances

  • Radiopharmaceuticals
  • Xenon Isotopes