Copper(II)-hydroxide facilitated C-C bond formation: the carboxamido pyridine system versus the methylimino pyridine system

Dalton Trans. 2020 Sep 15;49(35):12189-12196. doi: 10.1039/d0dt02288h.

Abstract

A copper(ii)-hydroxide-induced carbon-carbon bond formation reaction is explored with the synthesis of an asymmetric carboxamido-methylimino pyridine Cu(i) complex of [CuI(py(N-C[double bond, length as m-dash]O)(N[double bond, length as m-dash]C-C)ph2Me2)2]- (12). Two imine-methyl groups are coupled to form a bridged C-C bond (N[double bond, length as m-dash]C-C-C-C[double bond, length as m-dash]N) at the methyl positions with the reduction of two Cu2+ center ions to Cu+. The reaction is checked with three dicarboxamido pyridine [CuII-OH] complexes, with which dinuclear Cu(i) complexes of [Cu2(py(N-C[double bond, length as m-dash]O)2ph2R2)2]2- (R = methyl (3), methyl and allyl (6)) and trinuclear [CuII-CuI-CuII] complex of [Cu3(⊂20-py(N-C[double bond, length as m-dash]O)2ph2dienMe3)2]+ (9) are obtained. The reactivities of the [CuII-L] (L = DMF, OH-) complexes in dicarboxamido pyridine, carboxamido-methylimino pyridine and dimethylimino pyridine systems are discussed in terms of the electron delocalization properties of ligands. A cooperative metal-ligand (Cu2+ and enamide ligand) interaction is proposed based on the characterization of ligated Cu(ii) intermediates with the techniques of X-ray crystallography, UV-vis spectroscopy, cyclic voltammogram, EPR spectroscopy, and DFT calculations.