Transport of DNA within cohesin involves clamping on top of engaged heads by Scc2 and entrapment within the ring by Scc3

Elife. 2020 Sep 15:9:e59560. doi: 10.7554/eLife.59560.

Abstract

In addition to extruding DNA loops, cohesin entraps within its SMC-kleisin ring (S-K) individual DNAs during G1 and sister DNAs during S-phase. All three activities require related hook-shaped proteins called Scc2 and Scc3. Using thiol-specific crosslinking we provide rigorous proof of entrapment activity in vitro. Scc2 alone promotes entrapment of DNAs in the E-S and E-K compartments, between ATP-bound engaged heads and the SMC hinge and associated kleisin, respectively. This does not require ATP hydrolysis nor is it accompanied by entrapment within S-K rings, which is a slower process requiring Scc3. Cryo-EM reveals that DNAs transported into E-S/E-K compartments are 'clamped' in a sub-compartment created by Scc2's association with engaged heads whose coiled coils are folded around their elbow. We suggest that clamping may be a recurrent feature of cohesin complexes active in loop extrusion and that this conformation precedes the S-K entrapment required for sister chromatid cohesion.

Keywords: Cohesin; DNA entrapment; S. cerevisiae; SMC; biochemistry; chemical biology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Cycle Proteins / chemistry
  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism*
  • Chromosomal Proteins, Non-Histone / chemistry
  • Chromosomal Proteins, Non-Histone / genetics
  • Chromosomal Proteins, Non-Histone / metabolism*
  • Cohesins
  • DNA, Fungal / chemistry
  • DNA, Fungal / genetics
  • DNA, Fungal / metabolism*
  • Models, Molecular
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*

Substances

  • Cell Cycle Proteins
  • Chromosomal Proteins, Non-Histone
  • DNA, Fungal
  • IRR1 protein, S cerevisiae
  • Recombinant Proteins
  • SCC2 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins

Associated data

  • GEO/GSE156616