Impact of Juice Extraction Method (Flash Détente vs. Conventional Must Heating) and Chemical Treatments on Color Stability of Rubired Juice Concentrates under Accelerated Aging Conditions

Foods. 2020 Sep 10;9(9):1270. doi: 10.3390/foods9091270.

Abstract

Low color stability of Rubired food and beverage coloring negatively impacts color yield during production and storage while also limiting the use of this type of food colorant in applications where color stability is a key requirement. This study investigated the impact on color stability of using flash détente (FD) for Rubired color extraction in comparison to a conventional must heating (CMH) extraction process, in conjunction with the use of commercial seed tannin, acetaldehyde, or acid to lower the pH. Rubired concentrate color was evaluated under accelerated aging conditions at 50, 60, and 70 °C, over zero, three, six, and nine days for the different treatments. FD concentrate had lower color stability, with a half-life of 203.3 h and activation energy of 59.2 kJ/mol at 50 °C compared to the CMH concentrate with 233.9 h and 65.2 kJ/mol. FD concentrate generated less 5-hydroxymethylfurfural (5-HMF) during accelerated aging regardless of treatment. Acetaldehyde, low pH, and the combination of these two treatments increased red color stability as well as violet and brown color, whereas seed tannin had no effect. Low pH treatments increased 5-HMF formation and browning, which was detrimental to concentrate quality. Although promising in terms of color stabilization, implementation of these treatments will require development of solutions to mitigate the production of 5-HMF.

Keywords: color degradation kinetics; color units; grape color extraction; grape concentrate; grape food coloring.