Heart rate variability spectrum characteristics in children with sleep apnea

Pediatr Res. 2021 May;89(7):1771-1779. doi: 10.1038/s41390-020-01138-2. Epub 2020 Sep 14.

Abstract

Background: Classic spectral analysis of heart rate variability (HRV) in pediatric sleep apnea-hypopnea syndrome (SAHS) traditionally evaluates the very low frequency (VLF: 0-0.04 Hz), low frequency (LF: 0.04-0.15 Hz), and high frequency (HF: 0.15-0.40 Hz) bands. However, specific SAHS-related frequency bands have not been explored.

Methods: One thousand seven hundred and thirty-eight HRV overnight recordings from two pediatric databases (0-13 years) were evaluated. The first one (981 children) served as training set to define new HRV pediatric SAHS-related frequency bands. The associated relative power (RP) were computed in the test set, the Childhood Adenotonsillectomy Trial database (CHAT, 757 children). Their relationships with polysomnographic variables and diagnostic ability were assessed.

Results: Two new specific spectral bands of pediatric SAHS within 0-0.15 Hz were related to duration of apneic events, number of awakenings, and wakefulness after sleep onset (WASO), while an adaptive individual-specific new band from HF was related to oxyhemoglobin desaturations, arousals, and WASO. Furthermore, these new spectral bands showed improved diagnostic ability than classic HRV.

Conclusions: Novel spectral bands provide improved characterization of pediatric SAHS. These findings may pioneer a better understanding of the effects of SAHS on cardiac function and potentially serve as detection biomarkers.

Impact: New specific heart rate variability (HRV) spectral bands are identified and characterized as potential biomarkers in pediatric sleep apnea. Spectral band BW1 (0.001-0.005 Hz) is related to macro sleep disruptions. Spectral band BW2 (0.028-0.074 Hz) is related to the duration of apneic events. An adaptive spectral band within the respiratory range, termed ABW3, is related to oxygen desaturations. The individual and collective diagnostic ability of these novel spectral bands outperforms classic HRV bands.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Child
  • Child, Preschool
  • Female
  • Heart Rate*
  • Humans
  • Infant
  • Infant, Newborn
  • Male
  • Sleep Apnea Syndromes / physiopathology*