Challenges and prospects of nanosized silicon anodes in lithium-ion batteries

Nanotechnology. 2021 Jan 22;32(4):042002. doi: 10.1088/1361-6528/abb850.

Abstract

Batteries are commonly considered one of the key technologies to reduce carbon dioxide emissions caused by the transport, power, and industry sectors. We need to remember that not only the production of energy needs to be realized sustainably, but also the technologies for energy storage need to follow the green guidelines to reduce the emission of greenhouse gases effectively. To reach the sustainability goals, we have to make batteries with the performances beyond their present capabilities concerning their lifetime, reliability, and safety. To be commercially viable, the technologies, materials, and chemicals utilized in batteries must support scalability that enables cost-effective large-scale production. As lithium-ion battery (LIB) is still the prevailing technology of the rechargeable batteries for the next ten years, the most practical approach to obtain batteries with better performance is to develop the chemistry and materials utilized in LIBs-especially in terms of safety and commercialization. To this end, silicon is the most promising candidate to obtain ultra-high performance on the anode side of the cell as silicon gives the highest theoretical capacity of the anode exceeding ten times the one of graphite. By balancing the other components in the cell, it is realistic to increase the overall capacity of the battery by 100%-200%. However, the exploitation of silicon in LIBs is anything else than a simple task due to the severe material-related challenges caused by lithiation/delithiation during battery cycling. The present review makes a comprehensive overview of the latest studies focusing on the utilization of nanosized silicon as the anode material in LIBs.