Changes in temperature inside an optomechanical model of the human eye during emulated transscleral cyclophotocoagulation

Biomed Opt Express. 2020 Jul 23;11(8):4548-4559. doi: 10.1364/BOE.385016. eCollection 2020 Aug 1.

Abstract

Currently, many diseases of the eye are treated by laser surgery. An understanding of light propagation and the heating of eye tissue during laser exposure is crucial to improving the outcome of these procedures. Here, we present the development of physical and computational models of the human eye by combining optical light propagation and thermal characteristics. For the physical model, all parts of the eye, including cornea, lens, ciliary body, sclera, aqueous and vitreous humors, and iris, were fabricated using a 3D printed holder and modified polydimethylsiloxane. We also present a computational model based on finite element analysis that allows for a direct comparison between the simulation and experimental measurements. These models provide an opportunity to directly assess the rise in temperature in all eye tissues. The simulated and physical models showed good agreement for the transmission of light at varying incident angles. The heating of optical components was investigated in the retina and the ciliary body during simulated laser surgery. Temperature increases of 45.3°C and 30.6°C in the retina and ciliary bodies, respectively, were found in the physical model after 1 minute of exposure to 186 mW of 850 nm laser radiation. This compared to 29.8°C and 33.9°C increases seen under the same conditions in the simulation model with human eye parameters and 48.1°C and 28.7°C for physical model parameters. These results and these models are very promising for further investigation of the impact of laser surgery.