Chemically Programmed Vaccines: Iron Catalysis in Nanoparticles Enhances Combination Immunotherapy and Immunotherapy-Promoted Tumor Ferroptosis

iScience. 2020 Aug 26;23(9):101499. doi: 10.1016/j.isci.2020.101499. eCollection 2020 Sep 25.

Abstract

Immunotherapy has yielded impressive results, but only for a minority of patients with cancer. Therefore, new approaches that potentiate immunotherapy are a pressing medical need. Ferroptosis is a newly described type of programmed cell death driven by iron-dependent phospholipid peroxidation via Fenton chemistry. Here, we developed iron oxide-loaded nanovaccines (IONVs), which, chemically programmed to integrate iron catalysis, drug delivery, and tracking exploiting the characteristics of the tumor microenvironment (TME), improves immunotherapy and activation of ferroptosis. The IONVs trigger danger signals and use molecular disassembly and reversible covalent bonds for targeted antigen delivery and improved immunostimulatory capacity and catalytic iron for targeting tumor cell ferroptosis. IONV- and antibody-mediated TME modulation interfaced with imaging was important toward achieving complete eradication of aggressive and established tumors, eliciting long-lived protective antitumor immunity with no toxicities. This work establishes the feasibility of using nanoparticle iron catalytic activity as a versatile and effective feature for enhancing immunotherapy.

Keywords: Biomaterials; Cancer; Immunology; Nanomaterials; Therapy.