The symbioses of endophytic fungi shaped the metabolic profiles in grape leaves of different varieties

PLoS One. 2020 Sep 11;15(9):e0238734. doi: 10.1371/journal.pone.0238734. eCollection 2020.

Abstract

Endophytic fungi produce many novel bioactive metabolites that are directly used as drugs or that function as the precursor structures of other chemicals. The metabolic shaping of endophytes on grape cells was reported previously. However, there are no reports on the interactions and metabolic impact of endophyte symbiosis on in vitro vine leaves, which may be examined under well-controlled conditions that are more representative of the natural situation of endophytes within grapevines. The present study used an in vitro leaf method to establish endophyte symbiosis of grapevines and analyze the effects on the metabolic profiles of grape leaves from two different cultivars, 'Rose honey' (RH) and 'Cabernet sauvignon' (CS). The effects of endophytic fungi on the metabolic profiles of grape leaves exhibited host selectivity and fungal strain specificity. Most of the endophytic fungal strains introduced novel metabolites into the two varieties of grape leaves according to the contents of the detected metabolites and composition of metabolites. Strains RH49 and MDR36, with high or moderate symbiosis rates, triggered an increased response in terms of the detected metabolites, and the strains MDR1 and MDR33 suppressed the detected metabolites in CS and RH leaves despite having strong or moderate symbiosis ability. However, the strain RH12 significantly induced the production of novel metabolites in RH leaves due to its high symbiosis ability and suppression of metabolites in CS leaves.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Endophytes / physiology*
  • Fungi / physiology*
  • Metabolome*
  • Plant Leaves / metabolism*
  • Symbiosis*
  • Vitis / metabolism*
  • Vitis / microbiology*

Grants and funding

This work was financially supported by the National Natural Science Foundation of China (NSFC 31560538); and the joint foundation of Yunnan Provincial Department of Science and Technology and Yunnan University (No. 2019FY003024).