Identification of Novel Src Inhibitors: Pharmacophore-Based Virtual Screening, Molecular Docking and Molecular Dynamics Simulations

Molecules. 2020 Sep 8;25(18):4094. doi: 10.3390/molecules25184094.

Abstract

Src plays a crucial role in many signaling pathways and contributes to a variety of cancers. Therefore, Src has long been considered an attractive drug target in oncology. However, the development of Src inhibitors with selectivity and novelty has been challenging. In the present study, pharmacophore-based virtual screening and molecular docking were carried out to identify potential Src inhibitors. A total of 891 molecules were obtained after pharmacophore-based virtual screening, and 10 molecules with high docking scores and strong interactions were selected as potential active molecules for further study. Absorption, distribution, metabolism, elimination and toxicity (ADMET) property evaluation was used to ascertain the drug-like properties of the obtained molecules. The proposed inhibitor-protein complexes were further subjected to molecular dynamics (MD) simulations involving root-mean-square deviation and root-mean-square fluctuation to explore the binding mode stability inside active pockets. Finally, two molecules (ZINC3214460 and ZINC1380384) were obtained as potential lead compounds against Src kinase. All these analyses provide a reference for the further development of novel Src inhibitors.

Keywords: Src inhibitors; molecular docking; molecular dynamics simulations; pharmacophore model; virtual screening.

MeSH terms

  • Binding Sites
  • Databases, Pharmaceutical
  • Drug Discovery* / methods
  • Drug Evaluation, Preclinical
  • Humans
  • Ligands
  • Molecular Conformation
  • Molecular Docking Simulation*
  • Molecular Dynamics Simulation*
  • Molecular Structure
  • Protein Binding
  • Protein Interaction Domains and Motifs
  • Protein Kinase Inhibitors / chemistry*
  • Protein Kinase Inhibitors / pharmacology
  • Quantitative Structure-Activity Relationship
  • Reproducibility of Results
  • src-Family Kinases / antagonists & inhibitors
  • src-Family Kinases / chemistry*

Substances

  • Ligands
  • Protein Kinase Inhibitors
  • src-Family Kinases