Revisiting ecological dominance in arboreal ants: how dominant usage of nesting resources shapes community assembly

Oecologia. 2020 Oct;194(1-2):151-163. doi: 10.1007/s00442-020-04748-z. Epub 2020 Sep 9.

Abstract

Ecologically dominant species can shape the assembly of ecological communities via altering competitive outcomes. Moreover, these effects may be amplified under limited niche differentiation. Nevertheless, the influences of ecological dominance and niche differentiation on assembly are rarely considered together. Here, we provide a novel examination of dominance in a diverse arboreal ant community, defining dominance by the prevalent usage of nesting resources and addressing how it influences community assembly. We first used a series of quantitative observational and experimental studies to address the natural nesting ecology, colony incidence on surveyed trees, and level of dominance over newly available nesting resources by our focal species, Cephalotes pusillus. The experimental studies were then used further to examine whether C. pusillus shapes assembly via an influence on cavity usage by co-occurring species. C. pusillus was confirmed as a dominant user of cavity nesting resources, with highly generalized nesting ecology, occupying about 50% of the trees within the focal system, and accounting for more than a third of new cavity occupation in experiments. Our experiments showed further that the presence of C. pusillus was associated with modest effects on species richness, but significant decreases in cavity-occupation levels and significant shifts in the entrance-size usage by co-occurring species. These results indicate that C. pusillus, as a dominant user of nesting resources, shapes assembly at multiple levels. Broadly, our findings highlight that complex interactions between a dominant species and the resource-usage patterns of other species can underlie species assembly in diverse ecological communities.

Keywords: Community assembly; Ecological dominance; Interspecific competition; Niche differentiation; Resource specialization.

MeSH terms

  • Animals
  • Ants*
  • Ecosystem
  • Trees