Overexpression of miR-150-5p Alleviates Apoptosis in Sepsis-Induced Myocardial Depression

Biomed Res Int. 2020 Aug 30:2020:3023186. doi: 10.1155/2020/3023186. eCollection 2020.

Abstract

Sepsis-induced myocardial depression has high mortality and is very common in intensive care units. Previous studies have found that microRNAs play an important role in regulating sepsis-induced myocardial depression. miR-150-5p is involved in many biological processes; however, the mechanism underlying its role in sepsis-induced myocardial depression is still unclear. In this study, we generated rat models of septic shock induced by lipopolysaccharide. Whole genomic RNA sequencing was performed on 12 left ventricles collected after LPS treatment to identify miRNAs. Most of the target genes of the differently expressed microRNAs were involved in apoptosis, according to Gene Ontology. We also observed apoptosis in the heart tissue and in H9C2 cardiomyocytes stimulated with lipopolysaccharide, indicating that cell apoptosis may be an important mechanism in sepsis-induced myocardial depression. Furthermore, the expression of miR-150-5p was reduced, and overexpression of miR-150-5p with mimics resulted in a decrease in apoptosis, decreased expression of cleaved caspase3 and Bax, and increased expression of Bcl-2. Additionally, after H9C2 cells were transfected with miR-150-5p mimics or an inhibitor, the expression of Akt2 decreased or increased, respectively. These findings suggest that miR-150-5p can alleviate apoptosis and may be a novel therapeutic target for sepsis-induced myocardial depression.

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Apoptosis / genetics*
  • Cardiomyopathies / etiology
  • Cardiomyopathies / pathology
  • Cardiomyopathies / therapy*
  • Cell Communication
  • Cell Line
  • Disease Models, Animal
  • Lipopolysaccharides / toxicity
  • Male
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism
  • MicroRNAs / therapeutic use
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / pathology
  • Rats
  • Shock, Septic / complications
  • Up-Regulation

Substances

  • Lipopolysaccharides
  • MIRN150 microRNA, rat
  • MicroRNAs