Ultra-dense dual-polarization waveguide superlattices on silicon

Opt Express. 2020 Aug 31;28(18):26774-26782. doi: 10.1364/OE.401854.

Abstract

A dual-polarization waveguide superlattice is designed and realized by using 340 nm-thick silicon photonic waveguides. The silicon waveguide superlattices are formed with periodically arranged waveguides. Each period consists of five optical waveguides with core-widths designed optimally for minimizing the crosstalk among the optical waveguides. The optimized core-widths are 390 nm, 320 nm, 260 nm, 360 nm, and 300 nm when the separation between two adjacent waveguides is as small as 0.8 µm. With this design, the silicon waveguide superlattice works with low crosstalk (nearly -18 dB or less) for both polarizations within the range of 1530 nm to 1560 nm, which agrees well with the theoretical analysis.