Outcoupling efficiency enhancement of a bottom-emitting OLED with a visible parylene film

Opt Express. 2020 Aug 31;28(18):26724-26732. doi: 10.1364/OE.397789.

Abstract

We have investigated an effective and a single-step chemical vapor deposition (CVD) method to achieve conformal visible poly-dichloro-para-xylylene (parylene C) film for light extraction enhancement in bottom-emitting organic light-emitting diodes (OLEDs) at room temperature. We report that sublimed parylene dimers pyrolyzed between 400 °C and 500 °C resulted in visible parylene films with tunable transmittance and haze, exhibiting light scattering properties due to the formation of uniformly distributed dimer crystals. We achieved a novel conformal visible parylene film with total transmittance and high haze of 79.5% and 93.6%, respectively. It is observed that the outcoupling efficiency of the OLEDs employing the visible parylene film is enhanced up to 45.8%. Additionally, the OLED with the visible parylene light extraction film shows limited angle-dependency of emission spectrum over viewing angles. The single-step room temperature fabrication process of this conformal outcoupling film paves the way to achieving commercial high-performance OLEDs.