Diagnosis of Hippocampal Sclerosis in Children: Comparison of Automated Brain MRI Volumetry and Readers of Varying Experience

AJR Am J Roentgenol. 2021 Jul;217(1):223-234. doi: 10.2214/AJR.20.23990. Epub 2020 Sep 9.

Abstract

BACKGROUND. Hippocampal sclerosis (HS) is a leading cause of medically refractory temporal lobe epilepsy in children. The diagnosis is clinically important because most patients with HS have good postsurgical outcomes. OBJECTIVE. This study aimed to compare the performance of a fully automated brain MRI volumetric tool and readers of varying experience in the diagnosis of pediatric HS. METHODS. This retrospective study included 22 children with HS diagnosed between January 2009 and January 2020 who underwent surgery and an age- and sex-matched control group of 44 patients with normal MRI findings and extratemporal epilepsy diagnosed between January 2009 and January 2020. Regional brain MRI volumes were calculated from a high-resolution 3D T1-weighted sequence using an automated volumetric tool. Four readers (two pediatric radiologists [experienced] and two radiology residents [inexperienced]) visually assessed each MRI examination to score the likelihood of HS. One inexperienced reader repeated the evaluations using the volumetric tool. The area under the ROC curve (AUROC), sensitivity, and specificity for HS were computed for the volumetric tool and the readers. Diagnostic performances were compared using McNemar tests. RESULTS. In the HS group, the hippocampal volume (affected vs unaffected, 3.54 vs 4.59 cm3) and temporal lobe volume (affected vs unaffected, 5.66 vs 6.89 cm3) on the affected side were significantly lower than on the unaffected side (p < .001) using the volu-metric tool. AUROCs of the volumetric tool were 0.813-0.842 in patients with left HS and 0.857-0.980 in patients with right HS (sensitivity, 81.8-90.9%; specificity, 70.5-95.5%). No significant difference (p = .63 to > .99) was observed between the performance of the volumetric tool and the performance of the two experienced readers as well as one inexperienced reader (AUROCs for these three readers, 0.968-0.999; sensitivity, 86.4-90.9%; specificity, 100.0%). The volumetric tool had better performance (p < .001) than the other inexperienced reader (AUROC, 0.806; sensitivity, 81.8%; specificity, 47.7%). With subsequent use of the tool, this inexperienced reader showed a nonsignificant increase (p = .10) in AUROC (0.912) as well as in sensitivity (86.4%) and specificity (84.1%). CONCLUSION. A fully automated volumetric brain MRI tool outperformed one of two inexperienced readers and performed as well as two experienced readers in identifying and lateralizing HS in pediatric patients. The tool improved the performance of an inexperienced reader. CLINICAL IMPACT. A fully automated volumetric tool facilitates diagnosis of HS in pediatric patients, especially for an inexperienced reader.

Keywords: NeuroQuant; automated volumetry; child; epilepsy; hippocampal sclerosis; neuroimaging.

Publication types

  • Comparative Study

MeSH terms

  • Adolescent
  • Brain Diseases / diagnostic imaging*
  • Brain Diseases / pathology*
  • Child
  • Female
  • Hippocampus / diagnostic imaging*
  • Hippocampus / pathology*
  • Humans
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Organ Size
  • Reproducibility of Results
  • Retrospective Studies
  • Sclerosis
  • Sensitivity and Specificity