Polarization-sensitive transfer matrix modeling for displacement measuring interferometry

Appl Opt. 2020 Sep 1;59(25):7694-7704. doi: 10.1364/AO.396922.

Abstract

The use of polarizing optics for both beam steering and phase measurement applications in displacement measuring interferometer designs is almost universal. Interferometer designs that employ polarizing optics in this manner are particularly sensitive to the effects of unwanted optical cavities that form within the optics due to polarization leakage and back reflections from material interfaces. Modeling techniques commonly employed in the design of such interferometers are poorly suited to the analysis of multiple passes through polarizing optics. A technique, along with an accompanying software implementation, is presented here that is capable of modeling the propagation of monochromatic plane waves through an arbitrary network of linear planar optical components.