Physical Properties of Glass Ionomer Cement Containing Pre-Reacted Spherical Glass Fillers

Braz Dent J. 2020 Sep 4;31(4):445-452. doi: 10.1590/0103-6440202003276.

Abstract

The aim of this study was to assess the effect of different commercial liquid phases (Ketac, Riva, and Fuji IX) and the use of spherical pre-reacted glass (SPG) fillers on cement maturation, fluoride release, compressive (CS) and biaxial flexural strength (BFS) of experimental glass ionomer cements (GICs). The experimental GICs (Ketac_M, Riva_M, FujiIX_M) were prepared by mixing SPG fillers with commercial liquid phases using the powder to liquid mass ratio of 2.5:1. FTIR-ATR was used to assess the maturation of GICs. Diffusion coefficient of fluoride (DF) and cumulative fluoride release (CF) in deionized water was determined using the fluoride ion specific electrode (n=3). CS and BFS at 24 h were also tested (n=6). Commercial GICs were used as comparisons. Riva and Riva_M exhibited rapid polyacrylate salt formation. The highest DF and CF were observed with Riva_M (1.65x10-9 cm2/s) and Riva (77 ppm) respectively. Using SPG fillers enhanced DF of GICs on average from ~2.5x10-9 cm2/s to ~3.0x10-9 cm2/s but reduced CF of the materials on average from ~51 ppm to ~42 ppm. The CS and BFS of Ketac_M (144 and 22 MPa) and Fuji IX_M (123 and 30 MPa) were comparable to commercial materials. Using SPG with Riva significantly reduced CS and BFS from 123 MPa to 55 MPa and 42 MPa to 28 MPa respectively. The use of SPG fillers enhanced DF but reduced CF of GICs. Using SPG with Ketac or Fuji IX liquids provided comparable strength to the commercial materials.

MeSH terms

  • Compressive Strength
  • Dental Cements*
  • Glass Ionomer Cements*
  • Materials Testing
  • Tensile Strength

Substances

  • Dental Cements
  • Glass Ionomer Cements