Optimising Non-Patterned MoO3/Ag/MoO3 Anode for High-Performance Semi-Transparent Organic Solar Cells towards Window Applications

Nanomaterials (Basel). 2020 Sep 6;10(9):1759. doi: 10.3390/nano10091759.

Abstract

Semi-transparent organic solar cells (ST-OSCs) have attracted significant research attention, as they have strong potential to be applied in automobiles and buildings. For ST-OSCs, the transparent top electrode is an indispensable component, where the dielectric/metal/dielectric (D/M/D) structured electrode displayed a promising future due to its simplicity in the fabrication. In this work, by using the MoO3-/Ag-/MoO3-based D/M/D transparent electrode, we fabricated ST-OSCs based on the PM6:N3 active layer for the first time. In the device fabrication, the D/M/D transparent electrode was optimised by varying the thickness of the outer MoO3 layer. As a result, we found that increasing the thickness of the outer MoO3 layer can increase the average visible transmittance (AVT) but decrease the power conversion efficiency (PCE) of the device. The outer MoO3 layer with a 10 nm thickness was found as the optimum case, where its corresponding device showed the PCE of 9.18% with a high AVT of 28.94%. Moreover, the colour perception of fabricated ST-OSCs was investigated. All semi-transparent devices exhibited a neutral colour perception with a high colour rendering index (CRI) over 90, showing great potential for the window application.

Keywords: colour perception; non-fullerene; organic solar cells; semi-transparent; transparent electrodes.