Design and Parameter Research of Time-Harmonic Magnetic Field Sensor Based on PDMS in Microfluidic Technology

Polymers (Basel). 2020 Sep 4;12(9):2022. doi: 10.3390/polym12092022.

Abstract

In order to improve the throughput and sensitivity of the inductive metal micro-abrasive particle detection sensor, this paper uses microfluidic detection technology to design a high-throughput abrasive particle detection sensor based on PDMS (Polydimethylsiloxane). Theoretical modeling analyzes the magnetization of metal abrasive particles in the coil's time-harmonic magnetic field, and uses COMSOL simulation to calculate the best performance parameters of the sensor. Through the experiment of the control variable method, the corresponding signal value is obtained and the signal-to-noise ratio (SNR) is calculated. The SNR value and error value are calculated, and the SNR is corrected. The detection limit of the sensor is determined to be 10 μm iron particles and 60 μm copper particles. The optimal design parameters of the 3-D solenoid coil and the frequency characteristics of the sensor are obtained. Finally, through high-throughput experiments and analysis, it was found that there was a reasonable error between the actual throughput and the theoretical throughput. The design ideas suggested in this article can not only improve the sample throughput, but also ensure the detection accuracy. This provides a new idea for the development of an inductive on-line detection method of abrasive particle technology.

Keywords: PDMS application; coil parameter; microfluidic technology; solenoid magnetic field.