Intra- and Inter-Specific Crosses among Centaurea aspera L. (Asteraceae) Polyploid Relatives-Influences on Distribution and Polyploid Establishment

Plants (Basel). 2020 Sep 3;9(9):1142. doi: 10.3390/plants9091142.

Abstract

How polyploids become established is a long-debated question, especially for autopolyploids that seem to have no evolutionary advantage over their progenitors. The Centaurea aspera polyploid complex includes diploid C. aspera and two related tetraploids C. seridis and C. gentilii. Our purpose was to study the mating system among these three taxa and to analyze its influence on polyploid establishment. The distribution and ploidy level of the Moroccan populations, and forced intra- and inter-specific crosses were assessed. Allotetraploid C. seridis produced more cypselae per capitulum in the intra-specific crosses. It is a bigger plant and autogamous, and previous studies indicated that selfing forces the asymmetric formation of sterile hybrids. All these characteristics help C. seridis to avoid the minority-cytotype-exclusion effect and become established. Inter-specific hybridization was possible between C. aspera and C. gentilii, and with the symmetric formation of hybrids. However, 49% of the hybrid cypselae were empty, which probably reveals postzygotic barriers. Autotetraploid C. gentilii produced the same number of cypselae per capitulum as those of the diploid parental, has an indistinguishable field phenotype, is allogamous, and symmetrically produces hybrids. Therefore, C. gentilii does not seem to have the same competitive advantages as those of C. seridis.

Keywords: Asteraceae; Centaurea; allopolyploid; autopolyploid; cytotype; minority-cytotype exclusion; polyploidy; postzygotic barriers; tetraploid; triploid.