BMS-599626, a Highly Selective Pan-HER Kinase Inhibitor, Antagonizes ABCG2-Mediated Drug Resistance

Cancers (Basel). 2020 Sep 3;12(9):2502. doi: 10.3390/cancers12092502.

Abstract

Multidrug resistance (MDR) associated with the overexpression of ABC transporters is one of the key causes of chemotherapy failure. Various compounds blocking the function and/or downregulating the expression of these transporters have been developed over the last few decades. However, their potency and toxicity have always been a concern. In this report, we found that BMS-599626 is a highly potent inhibitor of the ABCG2 transporter, inhibiting its efflux function at 300 nM. Our study repositioned BMS-599626, a highly selective pan-HER kinase inhibitor, as a chemosensitizer in ABCG2-overexpressing cell lines. As shown by the cytotoxicity assay results, BMS-599626, at noncytotoxic concentrations, sensitizes ABCG2-overexpressing cells to topotecan and mitoxantrone, two well-known substrates of ABCG2. The results of our radioactive drug accumulation experiment show that the ABCG2-overexpressing cells, treated with BMS-599626, had an increase in the accumulation of substrate chemotherapeutic drugs, as compared to their parental subline cells. Moreover, BMS-599626 did not change the protein expression or cell surface localization of ABCG2 and inhibited its ATPase activity. Our in-silico docking study also supports the interaction of BMS-599626 with the substrate-binding site of ABCG2. Taken together, these results suggest that administration of chemotherapeutic drugs, along with nanomolar concentrations (300 nM) of BMS-599626, may be effective against ABCG2-mediated MDR in clinical settings.

Keywords: ABC transporters; ABCG2; BMS-599626; HER kinase inhibitor; chemotherapy; multidrug resistance.