Scaffolds for Wound Healing Applications

Polymers (Basel). 2020 Sep 3;12(9):2010. doi: 10.3390/polym12092010.

Abstract

In order to overcome the shortcomings related to unspecific and partially efficient conventional wound dressings, impressive efforts are oriented in the development and evaluation of new and effective platforms for wound healing applications. In situ formed wound dressings provide several advantages, including proper adaptability for wound bed microstructure and architecture, facile application, patient compliance and enhanced therapeutic effects. Natural or synthetic, composite or hybrid biomaterials represent suitable candidates for accelerated wound healing, by providing proper air and water vapor permeability, structure for macro- and microcirculation, support for cellular migration and proliferation, protection against microbial invasion and external contamination. Besides being the most promising choice for wound care applications, polymeric biomaterials (either from natural or synthetic sources) may exhibit intrinsic wound healing properties. Several nanotechnology-derived biomaterials proved great potential for wound healing applications, including micro- and nanoparticulate systems, fibrous scaffolds, and hydrogels. The present paper comprises the most recent data on modern and performant strategies for effective wound healing.

Keywords: natural polymers; scaffolds; synthetic polymers; wound healing.

Publication types

  • Review