Constructed wetlands integrated with microbial fuel cells for COD and nitrogen removal affected by plant and circuit operation mode

Environ Sci Pollut Res Int. 2021 Jan;28(3):3008-3018. doi: 10.1007/s11356-020-10632-3. Epub 2020 Sep 8.

Abstract

Organic matter and NH4+-N are two major pollutants in domestic sewage. This study evaluated the influence of plant and circuit operation mode on the performance of constructed wetlands integrated with microbial fuel cells (CW-MFCs) and investigated the removal mechanisms of organic matter and nitrogen. Better chemical oxygen demand (COD) removal was achieved in closed-circuit CW-MFCs regardless of planting or not, with average removal efficiencies of 83.19-86.28% (closed-circuit CW-MFCs) and 76.54-83.19% (open-circuit CW-MFCs), respectively. More than 70% organic matter was removed in the anaerobic region of all CW-MFCs. In addition, the planted CW-MFCs outperformed the unplanted CW-MFCs in ammonium, nitrate, and total nitrogen removal irrespective of circuit connection or not, for example, the NH4+-N removal efficiencies of 95.91-96.82% were achieved in planted CW-MFCs compared with 56.54-59.95% achieved by unplanted CW-MFCs. Besides, 33.14-55.69% of NH4+-N was removed in the anaerobic region. Throughout the experiment, the average voltages of planted and unplanted CW-MFCs were 264 mV and 108 mV, with the corresponding maximum voltage output of 544 mV and 321 mV, respectively. Furthermore, planted CW-MFCs, simultaneously producing a peak power density of 92.05 mW m-3 with a coulombic efficiency of 0.50%, exhibited better than unplanted CW-MFCs (3.29 mW m-3 and 0.21%, respectively) in bioelectricity generation characteristics. Graphical abstract.

Keywords: COD; Circuit operation mode; Constructed wetlands; Microbial fuel cells; Nitrogen removal; Plant.

MeSH terms

  • Bioelectric Energy Sources*
  • Biological Oxygen Demand Analysis
  • Denitrification
  • Nitrogen
  • Wastewater
  • Wetlands

Substances

  • Waste Water
  • Nitrogen