GREB1 regulates PI3K/Akt signaling to control hormone-sensitive breast cancer proliferation

Carcinogenesis. 2020 Dec 31;41(12):1660-1670. doi: 10.1093/carcin/bgaa096.

Abstract

Over 70% of breast cancers express the estrogen receptor (ER) and depend on ER activity for survival and proliferation. While hormone therapies that target receptor activity are initially effective, patients invariably develop resistance which is often associated with activation of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. While the mechanism by which estrogen regulates proliferation is not fully understood, one gene target of ER, growth regulation by estrogen in breast cancer 1 (GREB1), is required for hormone-dependent proliferation. However, the molecular function by which GREB1 regulates proliferation is unknown. Herein, we validate that knockdown of GREB1 results in growth arrest and that exogenous GREB1 expression initiates senescence, suggesting that an optimal level of GREB1 expression is necessary for proliferation of breast cancer cells. Under both of these conditions, GREB1 is able to regulate signaling through the PI3K/Akt/mTOR pathway. GREB1 acts intrinsically through PI3K to regulate phosphatidylinositol (3,4,5)-triphosphate levels and Akt activity. Critically, growth suppression of estrogen-dependent breast cancer cells by GREB1 knockdown is rescued by expression of constitutively activated Akt. Together, these data identify a novel molecular function by which GREB1 regulates breast cancer proliferation through Akt activation and provides a mechanistic link between estrogen signaling and the PI3K pathway.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Cell Proliferation
  • Female
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism*
  • Phosphatidylinositol 3-Kinase / genetics
  • Phosphatidylinositol 3-Kinase / metabolism*
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Receptors, Estrogen / metabolism*
  • Tumor Cells, Cultured

Substances

  • Biomarkers, Tumor
  • GREB1 protein, human
  • Neoplasm Proteins
  • Receptors, Estrogen
  • Phosphatidylinositol 3-Kinase
  • Proto-Oncogene Proteins c-akt