Measurement of CS2 Absorption Cross-Sections in the 188-215 nm Region at Room Temperature and Atmospheric Pressure

Appl Spectrosc. 2021 Jan;75(1):15-21. doi: 10.1177/0003702820955244. Epub 2020 Oct 6.

Abstract

Carbon disulfide, an important sulfur-containing species, has strong absorption lines in the wavelength range of 188 nm to 215 nm. It is difficult to accurately measure the absorption cross sections of carbon disulfide because carbon disulfide will be easily converted into carbon sulfide when it is exposed to ultraviolet light. In this study, the absorption cross sections of carbon disulfide were measured by reducing carbon disulfide conversion. The factors affecting carbon disulfide conversion, including gas flow rate, ultraviolet light intensity, and duration of illumination, were studied to reduce the conversion of carbon disulfide by controlling experimental conditions in the experiment. Finally, the absorption cross sections of carbon disulfide at room temperature and atmospheric pressure were calculated using the absorption spectrum and the carbon disulfide concentration in the absence of carbon disulfide conversion. The wavelengths of 16 absorption peaks on the carbon disulfide absorption cross sections of the vibration change were marked. Carbon disulfide has the maximum absorption cross section of 4.5 × 10-16 cm2/molecule at a wavelength of 198.10 nm.

Keywords: Carbon sulfide; UV; absorption cross-sections; carbon disulfide; ultraviolet light.